Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Identity-based ring signature scheme on number theory research unit lattice
Jinbo LI, Ping ZHANG, Ji ZHANG, Muhua LIU
Journal of Computer Applications    2023, 43 (9): 2798-2805.   DOI: 10.11772/j.issn.1001-9081.2022081268
Abstract265)   HTML6)    PDF (962KB)(183)       Save

Concerning the problems that the size of the trapdoor base is too large and the public key of ring members needs digital certificate authentication in the lattice-based ring signature schemes, an NTRU (Number Theory Research Unit) lattice-based Identity-Based Ring Signature scheme (NTRU-IBRS) was proposed. Firstly, the trapdoor generation algorithm on NTRU lattice was used to generate the system master public-private key pairs. Secondly, the master private key was taken as the trapdoor information and the one-way function was reversely operated to obtain the private key of every ring member. Finally, based on the Small Integer Solution (SIS) problem, the ring signature was generated by using the rejection sampling technology. Security analysis shows that NTRU-IBRS is anonymous and existentially unforgeable under adaptive chosen message and chosen identity attacks. Performance analysis and experimental simulation show that compared with the ring signature scheme on ideal lattice and the identity-based linkable ring signature scheme on NTRU lattice: in storage overhead, NTRU-IBRS has the system private key length decreased by 0 to 99.6% and the signature private key length decreased by 50.0% to 98.4%; and in time overhead, NTRU-IBRS has the total time overhead reduced by 15.3% to 21.8%. Simulation results of applying NTRU-IBRS to the dynamic Internet of Vehicles (IoV) scenario show that NTRU-IBRS can ensure privacy security and improve communication efficiency during vehicle interaction at the same time.

Table and Figures | Reference | Related Articles | Metrics